
1

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

Using inPAWS to convert John Wilson’s Adventuron game ‘Ramsbottom Smith and the

Quest for the Yellow Spheroid’ to the ZX Spectrum and other retro platforms

Background

John Wilson original wrote his ‘Ramsbottom Smith and the Quest for the Yellow

Spheroid’ game using the Adventuron system by Chris Ainsley. Adventuron is an easy to

use, modern authoring system, that runs through a web browser. It can, if you choose,

have the look and feel of a classic 8-bit adventure game.

John has been pioneering the use of the software, using it to convert a lot of his old

games from their original ZX Spectrum Quill versions, as well as creating a whole batch of

new, original text adventures.

‘Spheroid’ was one such game, and I volunteered to port the new title to the ZX

Spectrum, the original 8-bit home of Zenobi Software text adventures. Instead of using

The Quill, I chose to utilise its successor, the Professional Adventure Writing System (or

PAWS for short).

Because John designs his games and programs them in Adventuron in a very similar way

to how he coded his Quilled adventures, it was a relatively straightforward task to port

the game to the Spectrum. I’ve been asked to share some details about process and the

tools used, which is what you’ll find in this document.

2

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

The Tools: inPAWS

Although it would’ve been straightforward to code directly into the ZX Spectrum version

of PAWS, running in an emulator, it would’ve required typing in all of John’s (quite

lengthy) text from the Adventuron version by hand.

I decided to use an intermediate step, a PC compiler-based system called inPAWs,

instead. By utilising this tool, I could simply copy and paste the text from the original

Adventuron source file into the inPAWS source file, doing a little bit of tidying up as I

went.

Developed by Francisco Javier López, inPAWs was designed as a method of creating

PAWS adventures for retro hardware by editing a text document on a modern computer.

Once your source code is produced, you run it through a command line compiler which

produces several different outputs from which you can make a game. More on those

outputs later.

There are some limitations to the system, the main one being that inPAWS can only

produce Spectrum 48K-sized adventures. This memory limitation was not an issue for this

project.

inPAWS itself is quite a clever piece of software, giving the user the option of not have to

think about a lot of the more bookkeeping aspects of adventure writing, such as keeping

track of location, flag & object numbers. You can refer to most of these, and even chunks

of code, using words instead. inPAWS also lets you organise your code a lot looser;

defining vocabulary and writing code right next to objects, rather than separating

everything into distinct blocks.

However, because I’m old school, I want full control of my code, so I basically created the

adventure in inPAWS, exactly as I would have in the traditional PAWS. For that reason,

this document will not be much use as a tutorial of how to program an adventure in

inPAWS, but it should explain a few of the basics.

You can download inPAWS from here…. http://inpaws.speccy.org/indexEng.html

(Note: The inPAWS program is not a “Windows” program. It only runs from a command

prompt. On Windows 10 you can right click on the Windows button and choose the

option ‘Command Prompt’ to launch such a window. It uses old style DOS commands… if

you want to do any serious retro developing then you probably need to learn these.

However the command cd (choose directory) will be all you need for now.

cd foldername <-- opens up the subfolder with that name

cd .. <-- moves you back up a level.

http://inpaws.speccy.org/indexEng.html

3

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

Typing inpaws (when you’re in the folder containing the inPAWS program file) will show

you the correct syntax the program uses… More on that later…

As you will see from the list above, you can also extract the source from an existing 48K

Spectrum PAWS game… very useful to see how things work in inPAWS… particularly if

you’re familiar with intricacies of the adventure in question.

The Tools: Visual Code Studio

If, like me, you’re familiar with the editor-based system of the Spectrum PAWS the whole

idea of a text editor-based compiler system will probably seem quite alien. One of the

advantages of the ZX Spectrum version of PAWS was that you could edit an entry in the

database and almost instantly test if your code worked. The editor would also tell you off

if you made silly typing errors and refuse to accept your input.

Working with source code in a text editor can be a lot more problematic, with no instant

feedback and no error checking meaning you won’t spot mistakes until your run it

through a compiler. With compilers on old computers this could be quite a lengthy, time-

consuming process.

To make it easier to produce a suitable text file to feed into inPAWs, Chris Ainsley has

worked with adventure author Stefan Vogt to create a syntax highlighter. What this neat

little extension does is watches your code, as you type it into the editor, and prints the

different elements in in an specific colour depending on their type. It makes your code a

4

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

lot more readable and so it is considerably easier to spot where you’ve made a typing

error or other mistake.

The syntax highlighter, together with inPAWS’ extremely clear error reports, make the

compiler-based system a breeze to use.

To use Chris’ syntax highlighter you need to download and install the free program Visual

Code Studio from Microsoft. https://code.visualstudio.com/ This is a great text editor

and organisational tool in itself, but with Chris’ extension (available from the marketplace

at https://marketplace.visualstudio.com/items?itemName=ainslec.inpaws) it becomes

indispensable for this type of work.

When the extension is installed it will recognise any file with the extension .paw as being

an inPAWS file and should highlight the code accordingly.

Here’s a comparison between a section of the Spheroid inPAWs code in VCS without the

extension active and in VCS with the syntax highlighter on…

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ainslec.inpaws

5

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

Can you spot where I’ve made a typing error?

The inPAWS source code

inPAWs provides an example adventure source (that matches the tutorial adventure in

the PAWS manual) and also gives you an example blank file that you can edit. The blank

file is a good scaffold that I thoroughly recommend using. You can go through it and add

to the existing structure to build up your adventure.

I won’t go into detail about the actual process of coding the adventure. You will need to

read other reference texts if you want to learn the PAWS and inPAWS language.

I will, however, share some examples from the Spheroid final code, alongside the

Adventuron original source code where appropriate. Because I was doing things old-

school, it should be very familiar to anyone who has used PAWs. You can view the

complete inPAWS source code on my website.

Some key sections of the inPAWS source…

6

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

Defaults

Sets the default colours for Spectrum adventures. Using Speccy colour numbers…

Locations

This is where you define the locations and the connections between them… as Spheroid

is only a one location game the example below is from the Jack Lockerby game, Dragon

Quest…

Vocabulary

7

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

Vocabulary can be defined, just as in PAWS with different categories of words. In the

example below you can see how you can add different synonyms for each word, and also

shortened abbreviations if you wish. You just need to think carefully about potential

conflicts, such as the preposition UNDER and the object UNDERWEAR, which is also

shortened by the parser to UNDER.

Objects

Objects can be wearable, if they’re set as clothing. They can be containers. They can all

have individual weights. You attach a word to each object so the parser can recognise

them.

8

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

Messages

In the messages above the codes {16}{5} and {16}{3} are used to change the colour of the

text. The second of the pair of numbers selects the ink colour. 5 is cyan and 3 is

magenta… Look on a real Spectrum 48K keyboard to see why!

9

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

Speech marks must be proceeded by a backslash \. The ^ is used to force a line break.

System Messages

Many of the system messages are reserved for the PAWS program to use, although you

can change them from the defaults. I will explain the sections highlighted in green a little

later on.

Response table

The response table will be very familiar to anyone who has used the PAWS.

10

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

The system scans through the response table, looking to match the pink works with the

input given by the player. The CONDACTS in blue are very easy to understand.

For example…

These two lines deal with the response to the player typing in EXAMINE DOOR. Ignore the

PROCESS 16 bits (that’s something connected with adding extra line spacing). Let’s look

at the important parts of the first of the two lines…

If flag 88 is zero, as it is at the start of the game, it prints a message (246) about the door.

It waits (PAUSE 100) prints a second message (247) about finding a whip.

It then creates object 13, the whip (CREATE 13), waits (PAUSE 100), makes the player

take the object (GET 13).

It ends up by setting flag 88 to a non-zero value (SET 88) so that particular line isn’t called

a second time should the player choose to examine the door again.

Here’s the Adventuron version of the same code. It’s virtually identical. John does an

additional check to see if the player is at location 1… as the player is always at location 1

I’ve omitted that in the inPAWS version…

11

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

In the Adventuron version flag 38 is used where flag 88 was used in the inPAWS version.

PAWS reserves certain flag numbers for use by the system (flag 38 actually holds the

player’s location in PAWS) so refer to the PAWS manuals to find values that are safe to

use in inPAWS (or let the inPAWS system be in charge of assigning numbers… as a tiny bit

of a control freak, I can’t do that personally!)

Process tables

The process tables in PAWS work a lot like the response table but they don’t (usually)

match things against the player’s input. Process 1 and 2 are used for special system

purposes but you can define additional processes yourself to use for subroutines or to

provide additional clarity and structure to your code.

Process 1….

Process 1 is mainly used to add extra information to a location description. The

commands in process 1 run before process 2 and before the player is allowed to type

their command. In Spheroid, the process 1 table sorts out some of the location text

formatting. The first entry (* *: AT 0 ABILITY 255 255…) is triggered on the title page

(location 0) and sets the values of some key variables before printing up the intro text.

12

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

Process 2…

Process 2 can be considered the PAWS’ turn at the game. It’s triggered after the location

is described but also after every single turn by the player. In Spheroid this table is mostly

used to run a counter that triggers the times when Wee Yin comes into the room and

says something. Flag 75 is increased each turn (until it gets to 60) and if the flag equals

certain amounts the commands next to it are carried out. The command DONE will

always exit the table and no further parts of the table will be processed.

Process 3 onwards can be created and defined by the user themselves. In Spheroid

processes 3-15 are used to build up the various ending text.

I hope that gives you an overview of the inPAWS file. Please feel free to have a nose

through the complete source file to see how it all works.

13

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

Recommended Workflow

I would recommend that you regularly test your code as you go along. With the right

setup this can be extremely quick and easy to do.

Thanks to modern PCs, you can create a very efficient workflow which is almost as fast as

using the original editor-based PAWS. In fact, the original PAWS editor is a key part of my

setup.

To make things easier, all my code was kept in the same folder on my hard drive,

together with a copy of the inPAWS program. Obviously, you need to make sure you

create regular copies and backups of your key files.

I generally programmed with three windows open at once…

1. The VCS window, where I was writing the code.

2. The command prompt window, which I used whenever I needed to compile the code.

3. The emulator window (in my case Spectaculator) with a Spectrum version of PAWS

loaded. I would recommend you use either the 128K or (my personal preference) the +3

version of PAWs. Simply because this means you don’t need to worry about having to

load in the overlays from tape (or disk) as the 48K memory gets full.

Note: If you’re using the +3 version, you’ll need to pop into the Y menu and change the

input/output device to tape by typing T.

14

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

You can download an emulator image of PAWS from the authorised Gilsoft repository on

Stefan Vogt’s website… http://8-bit.info/the-gilsoft-adventure-systems/ If you don’t own

a physical copy of the system, then you should probably consider sending a donation to

Tim Gilberts or consider purchasing his new version of PAWS once it has been released.

These were the steps in my workflow…

1. Type each bit of source code in Visual Code Studio and save the file.

2. Go to the command prompt window and type the command…

inpaws c spheroid1.paw -o spheroid1.TAP

(A useful tip is to use the UP cursor to bring up the last command you typed in)

This (c)ompiles my spheroid1.paw source code and (o)utputs it as spheroid1.TAP which

is a ZX Spectrum emulator tape file.

3. Load the tape file into the emulator. Then type J (load) and load the database from

that tape file into the PAWs.

4. Type T for testing mode and you can try out your adventure.

I found this method to be extremely quick and efficient; allowing changes to be made to

the code and quickly tested. It gives you the best of both worlds… the advantages of

quick text entry through the compiler and the bonus of almost instant testing through

the Spectrum editor.

Fonts and UDGs

The inPAWS documentation itself clearly explains how to implement a custom font,

coloured text and UDGs in your Spectrum adventures.

To summarise that documentation, you use the inPAWS command line program to

extract the fonts and any graphics from an emulator snapshot file. This produces a chunk

of text that you can paste into your inPAWS source code file, meaning that whenever you

compile your source code in the future your font and graphics are included.

http://8-bit.info/the-gilsoft-adventure-systems/

15

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

(The handy UDG & font editor built into the Spectrum version of the PAWS)

The easy way to create the characters section of your inPAWS file is to load your chosen

font into the PAWS editor, making any changes required to the UDGs, and then save out

the full adventure (option A) to a blank emulator tape file. Reset your emulator into 48K

mode and load that adventure in to make a snapshot of it.

Use that snapshot as the file that you process using the inPAWS command line program.

Planning for an Amstrad CP/M version

One thing I haven’t mentioned about the inPAWS source code yet is these green ifdef

tags…

16

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

As well as producing adventures for the ZX Spectrum, you can also use inPAWS to make

games for Amstrad CP/M (the disk-based CPCs and PCWs) and old school PC DOS.

PAWS on the Amstrad CP/M is different to the Spectrum version. It is compiler-based

rather than editor-based. There are also subtle differences in the use of some of the flags

and system messages.

If you want to use a common source to create a game for more than one platform then

you use those green ifdef/endif tags to define parts that are specific to each system.

For example, the Amstrad version reserves some of the system messages for use as

messages about saving and loading to disk. Here are those sections…

In my code, I’ve not used the corresponding Spectrum versions of the messages (#ifdef

PAWSPECTRUM) but I have to include them or else there will be an error on compiling

(because you must use message numbers in order).

There are also layout differences between the Spectrum and Amstrad versions of PAWS.

Such as the input line prompt. CP/M doesn’t allow you to use your own graphics so you

need to provide two versions of those messages. One for your Spectrum game and one

for your Amstrad one.

Similarly, you can’t use UDGs in the Amstrad version (the CP/M version uses those codes

for text compression). This may mean that you may want to create an alternate version

of your title screen for the Amstrad. Or a different ‘anykey’ prompt that doesn’t use any

graphical elements. Or you may wish to have two versions of certain messages that are

17

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

formatted for different screen sizes. The Spectrum screen is 32 columns wide but the

CP/M version has a massive 80 columns of text.

For example, here is location 0 (the intro screen) in Spheroid. The Spectrum version uses

UDGs (user defined graphics) in the title screen… these are the bits with the codes

{146}{147}{148} etc.

The non-Spectrum version (#ifndef PAWSPECTRUM) doesn’t use any UDGs as Amstrad

PAW won’t accept them. You need to either eliminate or provide an alternate version of

any parts of your inPAWS source that will cause issues like this if you want it to work on

Amstrad too.

Producing an Amstrad CP/M version

My source file will compile both for Spectrum and CP/M. It’s a little trickier to make the

Amstrad version but here are the basic steps you’ll need to take.

When you have a finished writing your inPAWS source file, used your inPAWS program to

compile an Amstrad-compatible .SCE file using the command…

inpaws cm spheroid1.paw -o spheroid1.SCE

Note, I’m using the cm option this time.

You’ve now got a .SCE file, which is the raw file that gets fed into PAWS CP/M. It’s very

easy to corrupt this file. I know, because I managed to do it several times before Stefan

Vogt came to my rescue and took me through a process that works.

Here’s a process that works…

I use the excellent WinApe Amstrad CPC emulator which can be downloaded from…

http://www.winape.net/

You will need a copy of the PAWS CP/M disk image and you will probably need a second

blank CP/M disk image (you can always ERAse files off an existing one) to have enough

room to compile and save your adventure.

http://www.winape.net/

18

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

Select a suitable machine in your emulator (such as CPC128). Load your PAW disk in drive

A and your blank disk in drive B using the file menu.

In WinAPE you can open up the disk drives in a window and drop and drag files onto

them to edit on the fly. Drag your .SCE file from your desktop/or folder into the edit disk

menu and a copy will appear on the disk image.

Launch CP/M off the disk by typing |CPM. (To get the | on my emulator I need to hold

down SHIFT and the [key that’s next to P)

19

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

The two key programs on the PAWS CP/M disk are PAWCOMP and PAWINT.

You feed your .SCE into PAWCOMP to create a PAW database file. (.PDB)

e.g. PAWCOMP b:spheroid C

(The b: because my file is on drive B and the C as I need to compress the text otherwise

that particular adventure is too large to run)

20

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

Then you run the database you’ve created using PAWINT

e.g. PAWINT b:spheroid C

You’ll get an option to play the game or save it out as a standalone file. You may need to

do some disk juggling or insert a new disk in order to have room to save.

Once you’ve made your Amstrad CP/M standalone file, that file can be transferred to

other CP/M systems. One of the advantages of CP/M is it’s very portable across Z80

machines.

21

--
Gareth Pitchford: 8bitAG.com/Games – September 2018

Thanks…

I’ve been inspired to use inPAWS by the work of Stefan Vogt, who must surely now have

some sort of record for the amount of times he’s ported his own game to different (or

the same!) platforms, namely his sci-fi adventure Hibernated 1. Starting with a Quilled

version on the C64, he went on to use inPAWS to create PAWed versions for the ZX

Spectrum, PC DOS and CP/M (releasing that for both Amstrad and Commodore 128)

before switching to the DAAD system and publishing for C64, Amstrad CPC, Spectrum, PC

DOS, Atari ST and Amiga. My thanks go to him for sharing his experiences and extensive

technical knowledge. You can find out more about his Hibernated 1 game here…

https://8bitgames.itch.io/hibernated1

Thanks also goes to Chris Ainsley for the inPAWS syntax highlighter and his Adventuron

system. Tim Gilberts & Gilsoft for the PAWS, Francisco Javier López for inPAWS, and Mark

Hardisty for his guide that helped me import the familiar Zenobi 'rustic' font.

And, of course, many thanks to John Wilson for letting me play about with his game and

help bring it home to the ZX Spectrum.

https://8bitgames.itch.io/hibernated1

