
--
Gareth Pitchford: 8bitAG.com/Games – November 2018

A guide to converting a ZX Spectrum 48K PAWS adventures to Amstrad CP/M using inPAWS

By Gareth Pitchford, 8bitAG.com

Version 1.4 (Updated: November 2018)

This guide will outline how to convert a ZX Spectrum 48K text adventure, produced using

Gilsoft’s Professional Adventure Writing System, into a CP/M version that can be played on

disk-based Amstrad CPC and PCW machines. The CP/M version can also be used on a whole

host of other Z80 machines and the inPAWS source can also be compiled into a version for PC

DOS.

This document is intended for use by Spectrum text adventure authors to help them convert

their own games to the Amstrad machines. It’s not intended to help third parties take existing

Spectrum games and flood the Amstrad with quickly done ports, without the permission of

the original authors… I don’t think anybody really wants that!

This guide

Will use the #ifdef markup in inPAWS to show how you can maintain a source file that will

compile to both the Spectrum and Amstrad/PC DOS.

Will look at some of the differences between the Spectrum and Amstrad PAWs, addressing

issues with system messages, UDGs, and screen & layout problems.

Software Used:

inPAWs by Francisco Javier López, http://inpaws.speccy.org/indexEng.html

Microsoft’s Visual Code Studio https://code.visualstudio.com/

- with Chris Ainsley’s .paw syntax highlighter installed,

https://marketplace.visualstudio.com/items?itemName=ainslec.inpaws

The Professional Adventure Writer (CP/M version) by Gilsoft

- from Stefan Vogt’s Gilsoft Repository at http://8-bit.info/the-gilsoft-adventure-systems/

WinAPE or other Amstrad CPC emulator

- http://www.winape.net/ (currently being flagged up as a site with issues by Google?)

- Alternative .SCE transfer method - iDSK, see http://www.cpcwiki.eu/index.php/IDSK

& then use another emulator

http://inpaws.speccy.org/indexEng.html
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ainslec.inpaws
http://8-bit.info/the-gilsoft-adventure-systems/
http://www.winape.net/
http://www.cpcwiki.eu/index.php/IDSK

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

Extracting your Spectrum PAWs database and converting it to an inPAWS file

Pop the inpaws.exe file in a folder on your computer, along with the .SNA or .Z80 snapshot of

your 48K ZX Spectrum adventure.

From a command prompt navigate to the folder where you’ve placed your files and execute

the inpaws program using the command inpaws e mygame.Z80 -o mygame.paw

For example…

This will generate a .paw file that you can edit to create a new source that can be used to

build the Amstrad version of your adventure.

The Structure of the inPAWS (.paw) file

Load your .paw file into Visual Studio Code.

If you have Chris Ainsley’s inPAWS syntax highlighter installed your code will be colour-coded

to make it easier to read. Note that each line is numbered. inPAWs will refer to these line

numbers should it find an error in your code, making bugs and typos really easy to fix. inPAWs

has a great error report system.

The structure of the source code may initially seem confusing but at its core it’s really only the

Spectrum PAWs database presented in a slightly different format.

Let’s look at the main sections of the .paw file…

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

The defaults section sets the starting colours and character set for the Spectrum version of

the adventure. This information is completely ignored when making an Amstrad CP/M

adventure. To alter the ink and paper colours you need to actually edit the properties of the

CP/M disk (that your adventure is on) itself.

The locations come next in the file. Location descriptions are contained within a pair of

quotation marks, followed by a semi colon. The connections data is also included here.

I will mention what the numbers in the { } brackets are, when we get to the messages section.

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

The vocabulary section should be easy to understand.

The objects section includes both the name of the object and the associated vocabulary

word(s), and optionally other information such as the object’s weight and its initial status.

Here is an additional example that shows an item that can be worn…

An item that starts in the player’s inventory…

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

And here is an item that starts at a specific location…

In addition, INITIALLYAT WORN; can be used for objects that should be worn at the start of the

game (with the associated PROPERTY CLOTHING).

PROPERTY CONTAINER; sets the object to be a container.

The messages section follows after the objects. Once again, each message is enclosed in a pair

of speech marks and followed by a semi-colon. If speech marks are required in the actual

message they’re inserted using \” rather than “.

Time to address the numbers inside the curly brackets {}.

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

These numbers are how inPAWS represents the control codes that you use in Spectrum PAWs

adventures to select the text colour, the paper colour, brightness, the font to be used and

other elements such as the User Designed Graphics (UDGs).

In the Spectrum version of the PAWs, you’d usually insert these through a combination of

fairly complicated keypresses. Using the {} is a lot easier and less frustrating, especially these

days when many of us have forgotten which buttons activate ‘extended mode’.

A control code on its own, with a number between 0 and 5 in, e.g. {1} changes the font.

The control code {7} forces a line break but the symbol ^ is preferred (and used by default) by

inPAWS.

Some control codes work in pairs. For example {16}{5} or {19}{1}.

{16} denotes the ink colour. So {16}{3} would print the text that follows it in Magenta. {16}{7}

in white.

{17} selects the background colour. So {17}{4} would change the background, of text following

the codes, to green.

{19} selects the brightness. {19}{0} is the default and {19}{1} is bright. {18} and {20} work in a

similar fashion for flashing text and inverse video.

When you import an existing Spectrum game, as in the example above, you will sometimes

see redundant control codes… It was such a faff to enter these on the Spectrum (particularly

on a non-rubber-keyed model) that it was easy to include unseen extra codes!

Should you wish to use the {}, ^ or “ symbols in your text as normal characters then place a \

before them. E.g. \” or \^.

The other numbers you may see inside {} brackets, such as {145} or {150}, refer either to

special characters (such as the copyright symbol) or to user defined graphics. These are the

extra characters a user of the Spectrum version of PAWs can create themselves, using the

inbuilt character editor. Often UDGs are used as part of the input prompt or as a graphical

“press any key”. I’ll address UDGs more fully in the conversion section later on, as we’ll need

to remove them in the Amstrad version.

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

The system messages section follows after the standard messages. These are formatted in

exactly the same way.

Any graphics data imported from the Spectrum version is included next.

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

As is information on the character sets used.

The next section needs a little more explanation…

At this point in the source code you need to tell inPAWS which additional process tables you

have used. All the processes used in the original imported database will be automatically

“called out” here but if you add any more, during your editing, then you must mention them

in this section.

In the example above, a 14th process table would require the addition of PROCESS 14; to line

1262 in the code.

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

Now we get on to the response table or Process 0 (as Amstrad PAWs refers to it). This works

exactly as it does in PAWs, the only difference is that each entry is presented horizontally and

terminated with a semi-colon. The syntax highlighter’s colour coding really helps you parse the

code here and is very useful for spotting typing errors should you end up editing or adding to

the code.

Process 1, the process that is mainly used to add extra information to the location text,

follows the response table.

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

Then it’s process 2, which is considered the computer’s turn of the game.

After that the source code continues detailing any additional process tables you may have

used in your Spectrum adventure. The last process table forms the end of the source code.

I hope that you’re now a bit more familiar with what the inPAWS code looks like and can

identify the sections in your own adventure. Now it’s time to edit the code so it will work in

the Amstrad CP/M version of the PAW.

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

Converting Your Spectrum PAWs code to Amstrad CP/M PAWs

Now technically, if the Spectrum adventure that you’re converting is very simple and doesn’t

do anything that the Amstrad PAWs doesn’t like, you could attempt to compile your .paw file

into an Amstrad .SCE source file at this stage.

However, when you go to compile it into a database on the Amstrad, it’s highly likely you’ll get

a whole host of errors. Like this…

230 errors! Yikes!

So, let’s look at the steps you’ll need to take to adapt it…

Using the #ifdef tag to amend the code

If you want to tailor your .paw file to exclusively create an Amstrad version then you can just

make direct edits to it. However if, like me, you want to keep the option of using your new

.paw file as a source for both an Amstrad adventure and a revised Spectrum version of your

game, then you should use the #ifdef and #ifndef tags.

These tags allow us to provide two versions of code in the source file. Code surrounded by

#ifdef PAWSPECTRUM and #endif will be included in the Spectrum version. Code highlighted

by #ifndef PAWSPECTRUM and #endif (note the n in #ifndef) will be used to generate the

Amstrad (and PC DOS) editions of the game.

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

There will be plenty of examples of this code as we work through adapting our game file.

Step 1: Address any issues with the System Messages

The Amstrad version of the PAWs uses system message numbers 54 to 60 for file operations.

Despite a warning in the Spectrum PAWs manual about this, most Spectrum authors won’t

have kept those messages free.

So, our first step is to move the existing conflicting system messages to higher numbers and

insert the versions that the Amstrad needs for the disk operations.

Several of the Amstrad’s system messages have been used in this example, so my first step is

to copy this block of code and paste it to the end of the existing system messages.

Now, lets change the system message numbers so they follow on from the last of the original

system messages.

Technically I could’ve omitted message 76, 77 and 78 in this example (especially as messages

77 and 78 weren’t used) but for clarity I’m just going to change those too.

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

It’s worth keeping a note of the changes in message number for this next step.

Right, now use the find feature of the editor to identify places where these system messages

were used and amend the numbers accordingly.

Until all the relevant system message references (where they exist) have been changed.

Now, we need to go back to system messages 54 to 60 and replace this section with the

following code…

(You can grab the Amstrad part of this code from the new-eng.paw file that’s in the demo

folder of the inPAWs download)

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

The first block of code defines the new system messages 54 to 60 for the Spectrum version.

The second block adds the relevant messages for the Amstrad version.

Our system messages should now be sorted although it’s highly likely that we’ll return to

these blocks of code to look at them again when we move on to address the UDGs.

Step 2: Removing the UDG codes

The Amstrad version of the PAWs doesn’t use colours, fonts or UDGs. We can safely forget

about the colour & font codes, as they’ll be ignored when we compile our adventure, but we

need to address the UDGs.

Any embedded codes referring to UDGs must be removed as they’ll throw up errors when our

adventure is compiled on the Amstrad (as we saw when we tried to compile the game at the

beginning of this section).

This is one of the most time-consuming parts of the conversion, but the find tool again comes

to our rescue.

In the example game I’m working on converting, UDGs are used in various places. Such as on

the title page of the adventure…

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

…as a dividing line between the location text and responses, and also as part of the input

prompt…

We need to locate all these instances of UDGs and provide alternative messages, without the

codes in, that the Amstrad version can use.

UDGs technically span from {144} to {162}, although in practice most games won’t use more

than a handful.

There are various ways of locating them in your source code. You could simply search for each

one in turn, e.g. find {144} then {145} then {146}, but I tend to just do a search for {14 and

then {15 and this quickly gets me to the places where there are issues.

Let’s work through my example adventure and correct a few of the issues as we go…

The first place that I have an issue is location 0 which is the title screen of the adventure. My

solution here is to create an alternate location description that the Amstrad version of the

game will use.

You’ll notice I’ve used the #ifdef and #ifndef tags to preserve the original Spectrum version

and provide an alternate to the Amstrad version. I’ll come back to this location after I’ve

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

tested the game and tidy it up so it looks nice on the Amstrad screen, but for now let’s move

on…

Nothing else in my location text, but some of my messages use UDGs, such as this GAME OVER

message so I’ll need to either edit that or provide an Amstrad alternative…

Once again, I’ll just do a quick game over message for now and tidy it up to look better later…

Another message (162) needed editing, but I’ve decided to change it in both versions…

You can use a double slash // to add a comment to your code. Well worth doing if you’re

changing things!

In my adventure there were quite a few more messages to edit before I moved on to look at

the system messages.

System message 16 is the “press any key” prompt. I’m going to add an Amstrad-specific

version of that, not using UDGs, remembering that the Amstrad screen is 80 columns wide…

I can play about with the line spacing and how that looks later if I want to.

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

System messages 33 and 34 often contain UDGs as they are the start and end of the input line.

Best to keep it quite basic on the Amstrad, so…

A search for {15 throws up another problematic use of UDGs, in this case, message 67, one of

the dividing lines used between the location text and responses…

Time to count to 80 and put in a replacement simple divider for the Amstrad version…

There’s another similar fix needed elsewhere, with a second divider, but once that is done that

should be all the issues with UDGs addressed in my particular source code.

Step 3: Address any Process 1 or Process 2 issues

The Spectrum PAWs manual encouraged Spectrum authors to annotate their PAWs code in

Process 1 or 2 by using VERBs or NOUNS at the start of entries.

This was in place of the usual * *, * _ or _ _entries.

So, a line in Process 1 might read…

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

* DOG: AT 23 ZERO 64 MESSAGE 56;

…to print an additional message at location 23 when the dog (indicated by flag 64) was there.

The DOG part of the entry is ignored by Spectrum PAWs. It’s just there so the programmer can

remember that that is the line that prints the message about the dog.

Although this was a clever little trick it has unintended consequences in CP/M PAWs. The

CP/M version of the PAWs interprets Process 1 and 2 differently to the Spectrum version. In

CP/M PAWs the NOUN & VERB entries are not ignored. They are not just skipped over. CP/M

will attempt to match NOUNs & VERBs in all process tables, not just those related to the

response table (process 0).

This is a section of Process 1 from the Jack Lockerby game, the Islands of Sinbad.

Jack has used SEA and MONKE in the process table as a reminder that those lines print a

message about the SEA and a message about a MONKEY being present. In the Spectrum

version of the game this is fine the entries are processed as normal but in the Amstrad

conversion, the lines with * SEA and * MONKE on are skipped over! This means that vital parts

of the game never trigger.

You will need change any such references, while being mindful about the order that the table

will ultimately be sorted in PAWs.

In this case, we can simply replace the SEA/MONKEY with * or indeed _.

You will need to check your process 2 too. You’ll need to replace any VERBs & NOUNs used as

aide-mémoire’s there too.

If Process 1 or 2 make calls to other process tables, using them as subroutines, then you will

need to alter those processes too.

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

Don’t just change every process table in your adventure source code, though. If a process

table is called from the response table then the NOUN & VERB entries there will be often be

intentional and important, and should not be changed, because they will be used as a match

for the parser.

Step 4: Make a SCE file, try to compile it on Amstrad and fix any layout issues

We’re technically at the stage where we should now be able to compile the adventure on the

Amstrad and see how it looks.

First you need to make the .SCE file using inpaws.

So, from the command line, type…

inpaws cm game.paw -o game.SCE

(Where game.paw is the name of your .paw source file)

This should create the file game.SCE in your working folder. This is the file we need to put

onto a virtual Amstrad floppy disk to load into the emulator.

At this stage I tend to use two Floppy disk images in my Amstrad emulator. I load the PAWs

system disk into drive A and I place a second blank CP/M disk in drive B. If you don’t have a

suitable blank CP/M disk image, you can use an existing disk image and delete the files off it.

(You can probably get away with just using a single disk image, if you make sure there is plenty

of space on it.)

How you get your .SCE file onto the disk image will vary depending on your emulator. I use

WinAPE for Windows which allows you to insert the disks into the various drives and then edit

the disks (file > drive > edit). This brings up a window for the disk where you can drag and drop

files from your computer directly onto the disk image.

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

Once you’ve got your .SCE file onto your disk image you can load up CP/M and get to work on

compiling your adventure.

Type |cpm by holding shift and the [key (next to the P on a standard UK keyboard) to get the

| symbol. This will boot the CP/M operating system off the PAWs disk.

The CP/M system will now load up.

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

Run the PAWs compiler to turn your .SCE file into a PAWs database .PDB file by typing…

 PAWCOMP B:gamename C

…at the command prompt. Where gamename is the name of your gamename.SCE file and B: is

the disk it’s on. The C is optional, but it tells the compiler to compress the text… You’ll

probably need to do this.

So, in my example, I input PAWCOMP B:PCW C

This process will take several minutes to complete. Hopefully, at the end of it you will get a

compiled game without any errors, like so…

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

If you don’t, then first check that the errors you’re seeing aren’t caused by a missed control

code. If you’re still seeing errors then check the “additional problems” section at the end of

this document for other potential issues.

Hopefully, you should now have a compiled PDB file on disk A. What I tend to do at this point

is use the disk editor to delete the .SCE file on disk B and then move the PDB file from A to B.

Now it’s time to play and test your game. There is a second program on the PAWs disk to do

this. It’s the interpreter, pawint.

Type…

pawint b:gamename c

Where, once again, gamename is the first part of the gamename.PDB filename. B: presumes

that, like me, you’ve moved it over to the second disk. Adding the C to the command presents

us with the option to play or make a self-executing standalone version of the game.

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

For now, just hit P to play your adventure. It’s far from being done. You’ll be looking for any

bugs but what you’re really concentrating on now is any layout issues.

PAWs CP/M games are (by default) 80 columns wide, rather than the standard 32 columns of

Spectrum PAWs, so there will be differences to how everything looks on screen.

If you’ve manually centred text in the Spectrum version, using spaces, then you may want to

adjust the number of spaces to hit the centre of the Amstrad screen.

The Spectrum version also gives you more control of how you can print things on the screen. If

you’ve used some of those advanced features you’ll have to make some changes for your

Amstrad version.

Here is an issue that I noticed at one point in the example database I’m currently working

through…

I’ve got two dividing lines on screen, and one is in the wrong place. In the Spectrum version,

the first of those dividing lines would’ve been printed underneath the “By the window.” text.

This was accomplished on the Spectrum by using some of the more advanced screen

manipulation commands…

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

…namely the PRINTAT / BACKAT condacts which allow you to print text at a certain position on

the screen then return back to where you were previously printing.

The Amstrad doesn’t support advanced screen management commands so this needs

recoding for the CP/M version.

My solution here is to just get rid of the additional dividing line. If I really want it to appear

there then I can just add it manually to the location text for that section of the Amstrad game.

In this instance, it only applies to a small number of locations and I have enough free memory

to add the extra 80 characters to each specific location text.

Another thing I spotted…

The copyright symbol in the Spectrum version is produced with the code {127}. On the

Amstrad it’s best to use (c) as CP/M PAWs won’t accept the Amstrad’s code for ©, which is

{164}.

Again, the Spectrum version uses a code {96} to get the £ symbol but the Amstrad PAWs

doesn’t like this or (apparently) using £ itself. So, until I can find another solution, I’ll settle for

this…

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

And, barring a few other similar corrections and a few over ‘25-years later’ bug fixes, that’s the

Amstrad version of my game done.

One final thing to bear in mind is your use of colour in your Spectrum adventure and the lack

of any in the Amstrad version. If you’ve relied on coloured text to give subtle clues then you

may wish to add extra hints in the text of the Amstrad version.

When you’re happy with how everything looks and you’ve tested everything thoroughly you

can use pawint again to create a standalone .com file which can be placed on a CP/M disk or

disk image and played by others (choose the option ‘create a copy’).

Your inPAWs source can also be used (if correctly marked-up) to produce a revised Spectrum

version of your game and also a PC DOS version. The PC DOS version is constructed similarly to

the Amstrad version. First you use inPAWs to create a specific PC DOS .SCE file before

compiling that .SCE file on a PC. The only real issue you might face is that the PC you use for

the compiling stage needs to be running a 32-bit version of Windows. Once you’ve made the

database, though, it will run on any device that can use DOSbox.

I hope that this document has helped you convert your Spectrum adventure to the Amstrad.

What follows are some additional, rarer issues that some adventures may throw up.

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

Additional problems you may encounter…

You can’t convert a 128K game

Sadly inPAWS only works with 48K adventures. You can’t convert anything larger, such as a

128K adventure. If your Spectrum game is particularly close to the 48K limit then you may

have to think carefully about any edits or additions you make to adapt it to Amstrad…

although, the space freed by the font should usually help.

Errors when compiling an inPAWs file when nouns have “numerical” names

inPAWS doesn’t currently seem to like nouns that begin with numbers e.g. 10P (for a 10p coin)

when they’re used in the source code, such as for the response table entry EXAM 10P. I’ve

also experienced a few odd glitches with “numerical” nouns, even when inPAWs has

seemingly successfully compiled the file without errors. To get around these problems, use a

defined non-numerical synonym in the code instead, such as EXAM COIN. EXAM 10P will still

work in your game.

Blank entries causing compilation errors on the Amstrad

When creating the Amstrad version, inPAWS will ignore or strip-out any of the Spectrum

condacts that are not used on the Amstrad including a lot of the formatting commands such as

INK, PAPER etc.

If you’ve used these in an entry that doesn’t have any other CondActs in, for example

* * INK 7 PAPER 0;

then that will create a blank entry in the table of your database that will cause odd errors

when you try to compile them on the Amstrad.

* * ;

Either combine these commands with entries on another line, remove them, or use an #ifdef

PAWSPECTRUM / #endif to only apply them to the Spectrum version.

Here is an example, from the Jack Lockerby game Kidnapped, of an empty line of code causing

issues…

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

In the Spectrum code above you can that there is a line which only has SAVEAT on it. CP/M

PAWs does not understand that CondAct so inPAWs will strip it out when you compile your

.SCE file leaving you with an empty line, which the Amstrad compiler does not like…

Split lines appear in your text

When you play your game on the Amstrad you may see odd line breaks in the location or

message text. When you go back into your code you’ll notice that your Spectrum source had

seemingly random ^ line breaks manually forcing new lines rather than letting PAWs format

the text automatically.

There is a known issue with the Spectrum PAWs where a word coloured by character codes

will become unglued to the adjoining punctuation.

For example, when colouring the text like this:

“{16}{7}The car was {16}{5}blue{16}{7}.”

PAWs will see “blue” and “.” separately. It’s not normally an issue, but when the “blue.”

appears near the end of the line, you can sometimes end up with “blue” on the first line and

the “.” Punctuation on the second.

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

The car was blue

.

A workaround in Speccy PAWs was to put a line break before the “blue”, to force both “blue”

and “.” onto the next line and stop them being split. i.e.

“{16}{7}The car was^{16}{5}blue{16}{7}.”

The car was

blue.

Be aware of this and adjust the code for your Amstrad version to remove these workarounds

as it’s a bit more noticeable when the line suddenly breaks in an odd place when your lines are

80 characters long.

Some code works in Spectrum PAWs but not in Amstrad PAWs

Amstrad PAWs doesn’t like you using the LET command on the player location flag, for some

reason. E.g. LET 38 5 (set the player location to location 5). In most cases, simply replacing it

with GOTO will be fine, e.g. LET 38 5 becomes GOTO 5. If the author is doing complex

operations on the location flag then things may be more problematic.

Error 26 – Object starts worn but is unwearable

This issue was spotted by John Wilson, when converting some of Jack Lockerby’s old Spectrum

games to Amstrad CP/M.

A working Spectrum adventure database throws up an error when converted to run on the

CP/M version of PAWS, namely error 26 – Object starts worn but is unwearable.

The CP/M PAWs is once again being a lot stricter about how an adventure is defined or, in this

case, how an object is defined.

Let’s look at an example database, namely Jack Lockerby’s Kidnapped game, which is what

produced the error shown above.

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

In the Spectrum version of the PAWs, the properties of each object are defined over a whole

selection of tables. Let’s look how the problem object 32 (your usual clothes) is defined in

each of them…

First the object text menu (O):

The initially at menu (I) which shows us that object 32 starts as being worn:

And finally, the object weights table (X):

It’s this table that causes the issue for CP/M PAWs when we try and convert the adventure,

because object 32 has not been defined as being wearable or removable. This isn’t an issue for

the Spectrum version of the PAWs, which won’t throw up an error, but it is something that the

stricter CP/M system dislikes.

If we look further down the table we see how another object, object 49, has been correctly

defined as being wearable and removable…

Of course, it’s a lot easier to see all this information, and spot any potential issues, when we

import the Spectrum database into inPAWS, as the object properties are nicely grouped

together like this…

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

To correct the issue, we simply need to add an additional line to define object 32 as being

wearable/removable….

Depending on the game, you may need to add a line in the response table that stops the

player taking off this object (that the Spectrum author never originally defined as removable).

In the case of Kidnapped, there is already a response (for REMOV TREWS) to handle this…

(Thanks again to John Wilson for bringing this additional issue to my attention)

--
Gareth Pitchford: 8bitAG.com/Games – November 2018

Still stuck? Need more help?

You can find lots of Spectrum to Amstrad conversions on my website at:

http://8bitAG.com/games

with all the associated PAWs and inPAWs source files.

There are additional documents on inPAWs and Spectrum/Amstrad PAWs, including a

comparison between the two versions of PAWs on the website at:

http://8bitAG.com/info

Please don’t hesitate to get in touch if you wish to discuss your conversions.

